Cross-Modal Learning via Pairwise Constraints

نویسندگان

  • Ran He
  • Man Zhang
  • Liang Wang
  • Ye Ji
  • Qiyue Yin
چکیده

In multimedia applications, the text and image components in a web document form a pairwise constraint that potentially indicates the same semantic concept. This paper studies cross-modal learning via the pairwise constraint, and aims to find the common structure hidden in different modalities. We first propose a compound regularization framework to deal with the pairwise constraint, which can be used as a general platform for developing cross-modal algorithms. For unsupervised learning, we propose a cross-modal subspace clustering method to learn a common structure for different modalities. For supervised learning, to reduce the semantic gap and the outliers in pairwise constraints, we propose a cross-modal matching method based on compound l21 regularization along with an iteratively reweighted algorithm to find the global optimum. Extensive experiments demonstrate the benefits of joint text and image modeling with semantically induced pairwise constraints, and show that the proposed cross-modal methods can further reduce the semantic gap between different modalities and improve the clustering/retrieval accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-Modal Similarity Learning via Pairs, Preferences, and Active Supervision

We present a probabilistic framework for learning pairwise similarities between objects belonging to different modalities, such as drugs and proteins, or text and images. Our framework is based on learning a binary code based representation for objects in each modality, and has the following key properties: (i) it can leverage both pairwise as well as easy-to-obtain relative preference based cr...

متن کامل

Pairwise Relationship Guided Deep Hashing for Cross-Modal Retrieval

With benefits of low storage cost and fast query speed, crossmodal hashing has received considerable attention recently. However, almost all existing methods on cross-modal hashing cannot obtain powerful hash codes due to directly utilizing hand-crafted features or ignoring heterogeneous correlations across different modalities, which will greatly degrade the retrieval performance. In this pape...

متن کامل

Heterogeneous Metric Learning for Cross-Modal Multimedia Retrieval

Due to the massive explosion of multimedia content on the web, users demand a new type of information retrieval, called cross-modal multimedia retrieval where users submit queries of one media type and get results of various other media types. Performing effective retrieval of heterogeneous multimedia content brings new challenges. One essential aspect of these challenges is to learn a heteroge...

متن کامل

Cross-Domain Statistical–Sequential Dependencies Are Difficult to Learn

Recent studies have demonstrated participants' ability to learn cross-modal associations during statistical learning tasks. However, these studies are all similar in that the cross-modal associations to be learned occur simultaneously, rather than sequentially. In addition, the majority of these studies focused on learning across sensory modalities but not across perceptual categories. To test ...

متن کامل

Assessment of learning style based on VARK model among the students of Qom University of Medical Sciences

Introduction: Learning is a dominant phenomenon in human life. Learners are different from each other in terms of attitudes and cognitive styles which effect on the learning of people. In this connection, VARK learning style assess the students base their individual abilities and method for obtaining much information from environment in dimensions of visual, aural, read/write, and kinesthetic. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1411.7798  شماره 

صفحات  -

تاریخ انتشار 2014