Cross-Modal Learning via Pairwise Constraints
نویسندگان
چکیده
In multimedia applications, the text and image components in a web document form a pairwise constraint that potentially indicates the same semantic concept. This paper studies cross-modal learning via the pairwise constraint, and aims to find the common structure hidden in different modalities. We first propose a compound regularization framework to deal with the pairwise constraint, which can be used as a general platform for developing cross-modal algorithms. For unsupervised learning, we propose a cross-modal subspace clustering method to learn a common structure for different modalities. For supervised learning, to reduce the semantic gap and the outliers in pairwise constraints, we propose a cross-modal matching method based on compound l21 regularization along with an iteratively reweighted algorithm to find the global optimum. Extensive experiments demonstrate the benefits of joint text and image modeling with semantically induced pairwise constraints, and show that the proposed cross-modal methods can further reduce the semantic gap between different modalities and improve the clustering/retrieval accuracy.
منابع مشابه
Cross-Modal Similarity Learning via Pairs, Preferences, and Active Supervision
We present a probabilistic framework for learning pairwise similarities between objects belonging to different modalities, such as drugs and proteins, or text and images. Our framework is based on learning a binary code based representation for objects in each modality, and has the following key properties: (i) it can leverage both pairwise as well as easy-to-obtain relative preference based cr...
متن کاملPairwise Relationship Guided Deep Hashing for Cross-Modal Retrieval
With benefits of low storage cost and fast query speed, crossmodal hashing has received considerable attention recently. However, almost all existing methods on cross-modal hashing cannot obtain powerful hash codes due to directly utilizing hand-crafted features or ignoring heterogeneous correlations across different modalities, which will greatly degrade the retrieval performance. In this pape...
متن کاملHeterogeneous Metric Learning for Cross-Modal Multimedia Retrieval
Due to the massive explosion of multimedia content on the web, users demand a new type of information retrieval, called cross-modal multimedia retrieval where users submit queries of one media type and get results of various other media types. Performing effective retrieval of heterogeneous multimedia content brings new challenges. One essential aspect of these challenges is to learn a heteroge...
متن کاملCross-Domain Statistical–Sequential Dependencies Are Difficult to Learn
Recent studies have demonstrated participants' ability to learn cross-modal associations during statistical learning tasks. However, these studies are all similar in that the cross-modal associations to be learned occur simultaneously, rather than sequentially. In addition, the majority of these studies focused on learning across sensory modalities but not across perceptual categories. To test ...
متن کاملAssessment of learning style based on VARK model among the students of Qom University of Medical Sciences
Introduction: Learning is a dominant phenomenon in human life. Learners are different from each other in terms of attitudes and cognitive styles which effect on the learning of people. In this connection, VARK learning style assess the students base their individual abilities and method for obtaining much information from environment in dimensions of visual, aural, read/write, and kinesthetic. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1411.7798 شماره
صفحات -
تاریخ انتشار 2014